应用数学学报  2011, Vol. 34 Issue (3): 428-439    DOI:
 论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 |

1. 郑州大学数学系, 郑州 450052;2. 洛阳理工学院数理部, 洛阳 471003
Analysis of Nonconforming Finite Element Method for Bacterial Model
SHI Dongyang1, PEI Lifang1,2
1. Department of Mathematics, Zhengzhou University, Zhengzhou 450052;2. Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang 471003
 全文: PDF (355 KB)   HTML (0 KB)   输出: BibTeX | EndNote (RIS)      背景资料

 服务 把本文推荐给朋友 加入我的书架 加入引用管理器 E-mail Alert RSS 作者相关文章 石东洋 裴丽芳

Abstract
Nonconforming finite element method is considered for a system of reaction-diffusion equations of bacterial infection with initial and boundary conditions. Based on some special properties of the element and approaches for estimating the consistency error, the error estimates between numerical solutions and exact solutions are studied on the semi-discrete and the fully discrete finite element schemes, respectively. The optimal error estimates and superclose properties are derived.

 引用本文: 石东洋, 裴丽芳. 细菌模型的非协调有限元分析[J]. 应用数学学报, 2011, 34(3): 428-439. SHI Dongyang, PEI Lifang. Analysis of Nonconforming Finite Element Method for Bacterial Model[J]. Acta Mathematicae Applicatae Sinica, 2011, 34(3): 428-439.

 没有本文参考文献
 [1] 石东洋, 关宏波. 抛物型变分不等式的一类全离散非协调有限元方法[J]. 应用数学学报, 2008, 31(1): 90-96. [2] 金大永、张书华、周俊明. 对流扩散问题流线扩散法的最优误差估计[J]. 应用数学学报, 2006, 29(1): 97-103. [3] 梁宗旗. 广义混合非线性Schr\"odinger方程的拟谱方法[J]. 应用数学学报, 2005, 28(4): 598-615. [4] 向新民, 顾绍泉. 带五次项的NLS方程及其谱逼近的整体吸引子的维数估计[J]. 应用数学学报, 2003, 26(4): 664-674. [5] 刘蕴贤. 三维热传导型半导体问题的特征混合元方法和分析[J]. 应用数学学报, 1999, 22(3): 422-432.
 版权所有 © 2009 应用数学学报编辑部   E-mail: amas@amt.ac.cn京ICP备05002806号-9