应用数学学报
首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  相关链接  |  下载中心  |  联系我们  |  留言板
 
应用数学学报 英文版  
   
   
高级检索 »  
应用数学学报  2011, Vol. 34 Issue (4): 577-590    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
二阶奇异微分方程无穷边值问题
王颖1, 刘立山2, 王永庆2
1. 临沂大学理学院, 临沂 276005;
2. 曲阜师范大学数学科学学院, 曲阜 273165
Multiple Positive Solutions of Infinite Boundary Value Problem for Second-order Singular Differential Equations
WANG Ying1, LIU Lishan2, WANG Yongqing2
1. School of Science, Linyi University, Linyi 276005;
2. School of Mathematical Sciences, Qufu Normal University, Qufu 273165
 全文: PDF (319 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文通过构造一个特殊的锥, 利用锥上的不动点指数原理和Krasnosel'skii不动点定理讨论了一类二阶奇异微分方程无穷边值问题正解及多重正解的存在性. 本文结果包含、推广并改进了许多已知的结果.  
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词无穷边值问题   二阶奇异微分方程   多重正解   不动点        
Abstract: In this paper, by using the fixed point principle and the Krasnosel’skii fixed point theorem, the authors discuss the existence of positive and multiple positive solutions for the singular differential equations of infinite boundary value problems in a special cone. The results significantly extend and improve many known results even for non-singular cases.  
Key wordsinfinite boundary value problem   second-order singular differential equation   multiple positive solutions   fixed point   cone   
收稿日期: 2010-04-24;
基金资助:

国家自然科学基金(11071141)资助项目.

引用本文:   
. 二阶奇异微分方程无穷边值问题[J]. 应用数学学报, 2011, 34(4): 577-590.
. Multiple Positive Solutions of Infinite Boundary Value Problem for Second-order Singular Differential Equations[J]. Acta Mathematicae Applicatae Sinica, 2011, 34(4): 577-590.
 
[1] Liu B M, Liu L S, Wu Y H. Multiple Solutions of Singular Three-point Boundary Value Problems on [0,+∞). Nonlinear Anal, 2009, 70(9): 3348-3357
[2] 邢美红, 张克梅, 高合理. 半无穷区间广义Sturm-Liouville 边值问题的多个正解存在性. 数学物理学报, 2009, 29A(4): 929-939 (Xing M H, Zhang K M, Gao H L. Existence of Positive Solutions for General Sturm-Liouville Bound- ary Value Problems. Acta Mathematica Scientia, 2009, 29A(4): 929-939)
[3] Ma R Y, Zhu B. Existence of Positive Solutions for a Semipositone Boundary Value Problem on the Half-line. Comput. Math. Appl., 2009, 58: 1672-1686
[4] Kang P,Wei Z L. Multiple Positive Solutions of Multi-point Boundary Value Problems on the Half-line. Appl. Math. Comput, 2008, 196(1): 402-415
[5] Liu Y S. Existence and Unboundedness of Positive Solutions for Singular Boundary Value Problems on Half-line. Appl. Math. Comput., 2003, 144: 543-556
[6] Djebali S, Mebarki K. Multiple Positive Solutions for Singular BVPs on the Positive Half-line. Comput Math Appl, 2008, 55: 2940-2952
[7] Djebali S, Mebarki K. Existence Results for a Class of BVPs on the Positive Half-line. Comm. Appl. Nonlinear Anal., 2007, 14: 13-31
[8] Tian Y, Ge W G. Positive Solutions for Multi-point Boundary Value Problem on the Half-line. J. Math. Anal. Appl., 2007, 325: 1339-1349
[9] Meehan M, O’Regan D. Existence Theory for Equations on the Half-line. Nonlinear Anal., 1999, 35: 355-387
[10] O’Regan D, Yan B Q, Agarwal R P. Solutions in Weighted Spaces of Singular Boundary Value Problems on the Half-line. J. Comput. Appl. Math., 2007, 205: 751-763
[11] Yan B Q, O’Regan D, Agarwal R P. Unbounded Solutions for Singular Boundary Value Problems on the Semi-infinite Interval: Upper and Lower Solutions and Multiplicity. J. Comput. Appl. Math., 2006, 197: 365-386
[12] Zhang X G, Liu L S, Wu Y H. Existence of Positive Solutions for Second-order Semipositone Differ- ential Equations on the Half-line. Appl. Math. Comput., 2007, 185: 628-635
[13] Zima M. On Positive Solutions of Boundary Value Problems on the Half-line. J. Math. Anal. Appl., 2001, 259: 127-136
[14] Hao Z C, Liang J, Xiao T J. Positive Solutions of Operator Equations on Half-line. J. Math. Anal. Appl., 2006, 314: 423-435
[15] Lian H R, Ge W G. Existence of Positive for Sturm-Liouville Boundary Value Problems on the Half-line. J. Math. Anal. Appl, 2006, 321: 781-792
[16] 郝兆才, 毛安民. 一类奇异二阶边值问题正解存在的充分必要条件. 系统科学与数学, 2001, 21(1): 93-100 (Hao Z C, Mao A M. A Necessary and Sufficient Condition for the Existence of Positive Solutions to a Class of Singular Second-order boundary value problem. Journal of Systems Science and Mathematical Sciences, 2001, 21(1): 93-100)
[17] Wang Y , Liu L S, Wu Y H. Positive Solutions of Singular Boundary Value Problems on the Half-line. Appl. Math. Comput., 2008, 197: 789-796
[18] Liu L S, Wang Z G, Wu Y H. Multiple Positive Solutions of the Singular Boundary Value Problems for Second-order Differential Equations on the Half-line. Nonlinear Anal., 2009, 71: 2564-2575
[19] Agarwal R P, O’Regan D. Theory of Singular Boundary Value Problem. Singapore: World Science, 1994
[20] Guo D J, Lakshmikantham V. Nonlinear Problems in Abstract Cones. New York: Academic Press, 1988
[1] 崔玉军, 孙经先. Banach空间中二阶微分方程三点边值问题的正解[J]. 应用数学学报, 2011, 34(4): 743-751.
[2] 彭定涛. 非紧集上不连续函数的Ky Fan不等式及其等价形式和应用[J]. 应用数学学报, 2011, 34(3): 526-536.
[3] 黄龙光. 一类积集上的广义向量变分不等式[J]. 应用数学学报, 2011, 34(2): 254-264.
[4] 张亚琴. 自反Banach空间中向量优化问题弱有效解集特性的进一步研究[J]. 应用数学学报, 2011, 34(1): 102-112.
[5] 黄龙光. 一类积集上的广义向量变分不等式[J]. 应用数学学报, 2011, 34(1): 254-264.
[6] 闫东明. 一类四阶两点边值问题正解的存在性[J]. 应用数学学报, 2010, 33(6): 1113-1122.
[7] 唐古生, 刘金旺. 几乎凸多值映射的逼近选择及对平衡存在性与不动点定理的应用[J]. 应用数学学报, 2010, 33(6): 1133-1141.
[8] 孙宏雨, 赵春. 具有年龄结构两竞争种群系统的适定性和最优控制[J]. 应用数学学报, 2010, 33(6): 1037-1048.
[9] 唐金芳. 广义混合平衡问题和一族拟-φ-渐近非扩张映象不动点问题的强收敛定理[J]. 应用数学学报, 2010, 33(5): 878-888.
[10] 胡良根, 刘理蔚, 王金平. 伪压缩映象的广义Halpern迭代[J]. 应用数学学报, 2010, 33(3): 500-508.
[11] 张国娟, 刘颖范, 施庆生. 非自包含不动点定理及其在投入产出方程中的应用[J]. 应用数学学报, 2010, 33(3): 509-513.
[12] 王霞, 戚仕硕, 陈芳启. 二阶差分边值问题的正解[J]. 应用数学学报, 2010, 33(3): 547-558.
[13] 唐金芳. 广义混合平衡问题和一族拟-φ-渐近非扩张映象不动点问题的强收敛定理[J]. 应用数学学报, 2010, 33(1): 878-888.
[14] 孙 彦, 刘立山. 三阶奇异边值问题的正解[J]. 应用数学学报, 2009, 32(1): 50-59.
[15] 邹玉梅, 崔玉军. 含有一阶导数的二阶边值问题的正解[J]. 应用数学学报, 2009, 32(1): 106-111.
  版权所有 © 2009 应用数学学报编辑部   E-mail: amas@amt.ac.cn
京ICP备05002806号-9