应用数学学报
首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  相关链接  |  下载中心  |  联系我们  |  留言板
 
应用数学学报 英文版  
   
   
高级检索 »  
应用数学学报  2012, Vol. Issue (6): 1091-1098    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
次预不变凸集值优化导数型最优性条件
朱见广1, 郝彬彬2
1. 山东科技大学理学院, 青岛 266590;
2. 中国石油大学(华东), 青岛 266555
The Derivative Type Optimality Conditions of Subpreinvex Set-valued Optimization
ZHU Jianguang1, Hao Binbin2
1. College of Science, Shandong University of Science and Technology, Qingdao, 266590;
2. College of Science, China University of Petroleum, Qingdao, 266555
 全文: PDF (236 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 引入了集值映射的α-阶锥次预不变凸概念, 借助于α-阶相依上导数, 建立了锥次预不变凸集值映射的导数型择一性定理, 并利用择一性定理获得了集值优化导数型的最优性必要条件.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱见广
郝彬彬
关键词集值优化   α-阶相依上导数   锥次预不变凸   择一性定理   弱有效解     
Abstract: In this paper, the concept of α-order cone subpreinvex of set-valued maps is introduced, and a derivative type theorem of the alternative for cone subpreinvex set-valued maps by the α-order tangent derivative; using this theorem, the derivative type necessary optimality condition of set-valued maps are given.
Key wordsset-valued optimization   α-order tangent derivative   cone subpreinvex   theorem of the alternative   weak efficient solution   
收稿日期: 2009-10-19;
基金资助:

国家自然科学基金资助项目(61101208).

引用本文:   
朱见广,郝彬彬. 次预不变凸集值优化导数型最优性条件[J]. 应用数学学报, 2012, (6): 1091-1098.
ZHU Jianguang,Hao Binbin. The Derivative Type Optimality Conditions of Subpreinvex Set-valued Optimization[J]. Acta Mathematicae Applicatae Sinica, 2012, (6): 1091-1098.
 
[1] Yang X M, Yang X Q, Chen G Y. Theorems of the Alternative and Optimization with Set-valued Maps. J. Optim. Theory Appl., 2000, 107(3): 627-640
[2] Whitham G B. Linear and Nonlinear Waves. New York: Wiley, 1974
[3] Lin L J. Optimization of Set-valued Functions. J. Math. Anal. Appl., 1994, 186: 30-51
[4] Constantin A, Ivanov R I. On an Integrable Two-Component Camassa-Holm Shallow Water System. Phys. Lett. A, 2008, 372: 7129-7132
[5] Sheng B H, Liu S Y. Kuhn-tucker Condition and Wolfe Duality of Preinvex Set-valued Optimization. Appl. Math. Mech. (Engl. Ed.), 2006, 27(12): 1655-1664
[6] Sheng B H, Liu S Y. The Generalized Optimality Conditions of Set-valued Optimization with Benson Proper Efficiency. Acta Math. Sci., 2003, 46(3): 611-620
[7] Li J, Chen G. Bifurcations of Travelling Wave Solutions for Four Classes of Nonlinear Wave Equations. Internat. J. of Bifur. Chaos, 2005, 15: 3973-3998
[8] Sheng B H, Liu S Y. The Optimality Conditions of Nonconvex Set-valued Vector Optimization. Acta Math. Sci. B, 2002, 22(1): 47-55
[1] 张亚琴. 自反Banach空间中向量优化问题弱有效解集特性的进一步研究[J]. 应用数学学报, 2011, 34(1): 102-112.
[2] 高英. 多目标优化 ε-拟弱有效解的最优性条件[J]. 应用数学学报, 2010, 33(6): 1061-1071.
[3] 王晓敏, 胡毓达. 群体多目标最优化的Lagrange对偶性[J]. 应用数学学报, 2003, 26(4): 702-707.
  版权所有 © 2009 应用数学学报编辑部   E-mail: amas@amt.ac.cn
京ICP备05002806号-9