应用数学学报(英文版)
HOME | ABOUT JOURNAL | EDITORIAL BOARD | FOR AUTHORS | SUBSCRIPTIONS | ADVERTISEMENT | CONTACT US
 
Acta Mathematicae Applicatae
Sinica, Chinese Series
 
   
   
Adv Search »  
Acta Mathematicae Applicatae Sinica, English Series 2012, Vol. 28 Issue (1) :75-90    DOI: 10.1007/s10255-012-0124-z
ARTICLES Current Issue | Next Issue | Archive | Adv Search << | >>
Local Influence Analysis for Semiparametric Reproductive Dispersion Nonlinear Models
Xue-dong CHEN, Nian-sheng TANG, Xue-renWANG
Department of Statistics, Yunnan University, Kunming 650091, China
Download: PDF (1KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract The present paper proposes a semiparametric reproductive dispersion nonlinear model (SRDNM) which is an extension of the nonlinear reproductive dispersion models and the semiparameter regression models. Maximum penalized likelihood estimates (MPLEs) of unknown parameters and nonparametric functions in SRDNM are presented. Assessment of local influence for various perturbation schemes are investigated. Some local influence diagnostics are given. A simulation study and a real example are used to illustrate the proposed methodologies.  
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
Keywordslocal influence analysis   maximum penalized likelihood estimate   nonlinear reproductive dispersion models   semiparametric regression model     
Abstract: The present paper proposes a semiparametric reproductive dispersion nonlinear model (SRDNM) which is an extension of the nonlinear reproductive dispersion models and the semiparameter regression models. Maximum penalized likelihood estimates (MPLEs) of unknown parameters and nonparametric functions in SRDNM are presented. Assessment of local influence for various perturbation schemes are investigated. Some local influence diagnostics are given. A simulation study and a real example are used to illustrate the proposed methodologies.  
Keywordslocal influence analysis,   maximum penalized likelihood estimate,   nonlinear reproductive dispersion models,   semiparametric regression model     
Received: 2008-11-22;
Fund:

Supported by the National Natural Science Foundation of China (No. 10961026, 10761011) and the National Social Science Foundation of China (No. 10BTJ001).

Cite this article:   
.Local Influence Analysis for Semiparametric Reproductive Dispersion Nonlinear Models[J]  Acta Mathematicae Applicatae Sinica, English Serie, 2012,V28(1): 75-90
URL:  
http://www.applmath.com.cn/jweb_yysxxb_en/EN/10.1007/s10255-012-0124-z      或     http://www.applmath.com.cn/jweb_yysxxb_en/EN/Y2012/V28/I1/75
 
[1] Chatterjee, S., Hadi, A.S. Sensitivity Analysis in Linear Regression. John Wiley, New York, 1988
[2] Christensen, R., Pearson, L.M., Johnson, W. Case deletion diagnostics for mixed models. Technometrics, 34: 38-45 (1992)
[3] Cook, R.D. Detection of influential observations in linear regression. Technometrics, 19: 15-18 (1977)
[4] Cook, R.D., Weisberg, S. Residuals and Influence in Regression. New York: Chapman & Hall, (1982)
[5] Cook, R.D. Assessment of local influence (with discussion). J. Roy. Statis. Socie. S.B., 48: 133-169 (1986)
[6] Engle, R.F., Rice, J. Semiparametric estimates of the relation between weather and electricity sales. J. Amer. Statist. Assoc., 81: 310-321 (1986)
[7] Fung, W.K., Zhu, Z.Y., Wei, B., He, X. Influence diagnostics and outlier tests for semiparametric mixed models. J. Roy. Statis. Socie. S. B., 64: 565-579 (2002)
[8] Green, P.J., Silverman, B.W. Nonparametric regression and generalized linear models. Chapman & Hall, London, 1994
[9] He, X.M., Fung, W.K., Zhu, Z.Y. Robust estimations in generalized partial linear models for clustered data. J. Amer. Statist. Assoc., 100: 1176-1182 (2005)
[10] Jorgensen, B. The Theory of Dispersion Models. Chapman & Hall, London, 1997
[11] Kim, C., Park, B.U., Kim, W. Influence diagnostics in semiparametric regression models. Statist. & Probabi., 60: 49-58 (2002)
[12] Kwan, C.W., Fung, W.K. Assessing local influence for specific restricted likelihood: application to factor analysis. Psychometrika, 63: 35-46 (1998)
[13] Lee, S.Y., Tang, N.S. Local influence analysis of nonlinear structural equation models. Psychometrika, 69: 759-773 (2004)
[14] Ouwens, M.J., Tan, F.E., Berger, M.P. Local influence to detect influential data structures for generalized linear mixed models. Biometrics, 54: 1166-1172 (2001)
[15] Poon, W.Y., Poon, Y.S. Conformal normal curvature and assessment of local influence. J. Roy. Statis. Socie. S.B., 61: 51-61 (1999)
[16] Pregibon, D. Logistic regression diagnostics. Annals of Statistics, 9: 705-724 (1981)
[17] ST. Laurent, R.T., Cook, R.D. Leverage Local influence and curvature in nonlinear regression. Biometrika, 80: 99-106 (1993)
[18] Ross, W.H. The geometry of case deletion and the assessment of influence in nonlinear regression. Canad. J. Statist., 15: 91-103 (1987)
[19] Tang, N.S., Wei, B.C., Wang, X.R. Influence diagnostics in nonlinear reproductive dispersion models. Statist. & Prob. lette., 46: 59-68 (2000)
[20] Tang, N.S., Wei, B.C., Wang, X.R. Local influence in nonlinear reproductive dispersion models. Comm. Statist. S.A., 30: 435-449 (2001)
[21] Tang, N.S., Wei, B.C., Wang, X.R. Detection of influential observation in nonlinear reproductive dispersion models. Austr. & N. Zea. J. Statist., 44: 185-194 (2002)
[22] Tang, N.S., Wei, B.C., Zhang, W.Z. Influence diagnostics in nonlinear reproductive dispersion mixed models. Statistics, 40: 227-246 (2006)
[23] Tang, N.S., Wei, B.C. Nonlinear Reproductive Dispersion Models. Science Press, Beijing, 2007
[24] Thomas, W., Cook, R.D. Assessing influence on regression coefficients in generalized linear models. Biometrika, 76: 741-749 (1989)
[25] Wei, B.C. Exponential Family Nonlinear Models. Springer-Verlag, Singapore, 1998
[26] Williams, D.A. GLM diagnostics using the deviance and single case deletions. Appl. Statist., 36: 181-191 (1987)
[27] Zhu, Z.Y., He, X.M., Fung, W.K. Local influence analysis for penalized gaussian likelihood estimators in partial linear models. Scand. J. Statist., 30: 767-780 (2003)
[28] Zhu, Z.Y., Wei, B.C. Diagnostic and influence analysis for semiparametric nonlinear model. Acta Math. Appl. Sin., 24: 568-581 (2001)
没有找到本文相关文献
Copyright 2010 by Acta Mathematicae Applicatae Sinica, English Serie