应用数学学报(英文版)
HOME | ABOUT JOURNAL | EDITORIAL BOARD | FOR AUTHORS | SUBSCRIPTIONS | ADVERTISEMENT | CONTACT US
 
Acta Mathematicae Applicatae
Sinica, Chinese Series
 
   
   
Adv Search »  
Acta Mathematicae Applicatae Sinica, English Series 2012, Vol. 28 Issue (1) :193-200    DOI: 10.1007/s10255-012-0134-x
ARTICLES Current Issue | Next Issue | Archive | Adv Search << | >>
Ordering Graphs with Cut Edges by Their Spectral Radii
Kun-fu FANG
Faculty of Science, Huzhou Teachers College, Huzhou 313000, China
Download: PDF (1KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Let Gnk denote a set of graphs with n vertices and k cut edges. In this paper, we obtain an order of the first four graphs in Gnk in terms of their spectral radii for 6 ≤ k ≤ (n-2)/3 .  
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
Keywordsspectral radius   cut edge   ordering   eigenvalue     
Abstract: Let Gnk denote a set of graphs with n vertices and k cut edges. In this paper, we obtain an order of the first four graphs in Gnk in terms of their spectral radii for 6 ≤ k ≤ (n-2)/3 .  
Keywordsspectral radius,   cut edge,   ordering,   eigenvalue     
Received: 2007-04-13;
Fund:

Supported by the National Natural Science Foundation of China (No. 11071078).

Cite this article:   
.Ordering Graphs with Cut Edges by Their Spectral Radii[J]  Acta Mathematicae Applicatae Sinica, English Serie, 2012,V28(1): 193-200
URL:  
http://www.applmath.com.cn/jweb_yysxxb_en/EN/10.1007/s10255-012-0134-x      或     http://www.applmath.com.cn/jweb_yysxxb_en/EN/Y2012/V28/I1/193
 
[1] Berman, A., Zhang, X.D. On the spectral radius of graphs with cut vertices. J. Combin. Theory Ser. B, 83: 233-240 (2001)
[2] Bondy, J.A., Murty, U.S.R. Graph Theory with Applications. The Macmillan Press LTD, 1976
[3] Bruadli, R.A., Solheid, E.S. On the spectral radius of complementary acyclic matrices of zeros and ones. SIAM J. Algebra Discrete Methods, 7: 265-272 (1986)
[4] Cvetkovi?, D., Rowlinson, P., Simi?, S. Eigenspaces of graphs. Cambridge University Press, Cambridge, 1997
[5] Guo, S.G. First six unicyclic graphs of order n with larger spectral radius. Appl. Math. J. Chinese Univ. Ser. A, 18(4): 480-486 (2003)
[6] Li, Q., Feng, K.Q. On the largest eigenvalue of a graph. Acta Math. Appl. Sinica, 2: 167-175 (1979) (in Chinese)
[7] Liu, H.Q., Lu, M., Tian, F. On the spectral radius of graphs with cut edges. Linear Algebra Appl., 389: 139-145 (2004)
[8] Wu, B.F., Xiao, E.L., Hong, Y. The spectral radius of trees on k pendent vertices. Linear Algebra Appl., 395: 343-349 (2005)
没有找到本文相关文献
Copyright 2010 by Acta Mathematicae Applicatae Sinica, English Serie